Endomorphisms in Persistent Homology and the Conley Index Computation via Quiver Representations

Michał Palczewski

Faculty of Applied Physics and Mathematics & Doctoral School, Gdańsk University of Technology, Gdańsk, Poland michal.palczewski@pg.edu.pl

We introduce a method for the computation of the homomorphism inuced in persistent homology by a continuous map, building on ideas from previous approaches [1, 2, 4]. The method combines a continuous function $f: X \to Y$ with the inclusion map $\iota: X \to Y$, allowing for the computation of the Conley index map, as discussed in [3]. Given topological spaces X and Y, along with sampled data $f|_S$ representing the restriction of f to a finite subset $S \subset X$, we propose a framework based on quiver representations for the computation of an endomorphism in persistent homology. We introduce the notion of approximate index pairs based on the sampled map, and we apply our framework to make an attempt to compute a persistence version of the Conley index.

References

- Edelsbrunner H., Jabłoński G. and Mrozek M., The persistent homology of a self-map, Found. Comut. Math., 15(5): 1213–1244, October 2015
- [2] Harker S., Kokubu H., Mischaikow K. and Pilarczyk P., Inducing a map on homology from a correspondence, Proc. Am. Math. Soc., 144(4): 1787– 1801, August 2015
- [3] Mischaikow K., Mrozek M. and Pilarczyk P., Graph approach to the computation of the homology of continuous maps, Found. Comput. Math., 5(2): 199–229, April 2005
- [4] Takeuchi H., The persistent homology of a sampled map: from a viewpoint of quiver representations, J. Appl. Comput. Topol., 5(2): 179–213, June 2021